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Abstract 
 
One of the many challenges posed by the study of high frequency financial market data is 
to develop models capable of explaining asset price behaviour at a range of frequencies. 
At the same time as presenting researchers with new opportunities, it also calls into 
question whether standard time series models are useful in high frequency applications. 
This paper addresses this issue from two perspectives. First, a Monte Carlo procedure is 
used to investigate whether the unconditional distribution of high frequency foreign 
exchange returns can be approximated by the unconditional distribution of returns 
simulated by a range of popular stochastic processes. Second, high frequency data is used 
to generate and appraise forecasts of daily variance. Forecasts are evaluated using 
statistical criteria as well as a profitability measure based on a trading game in a pseudo 
options market. 
 
The simulation exercise demonstrates that the autoregressive conditional 
heteroskedasticity (ARCH) family of models is unable to reproduce the unconditional 
distribution of foreign exchange returns at frequencies higher than 24 hours. This is 
largely a legacy of the heavy-tailed feature of intraday returns. However, results from the 
forecasting analysis extend those in Andersen and Bollerslev (1998) by showing that a 
range of standard volatility models can in fact produce accurate forecasts of realized daily 
variance. In other words, it is possible for ARCH models to predict variability in the 
conditional second moment of daily foreign exchange returns. This is attributed to the use 
of frequently sampled data in the construction of estimates of realized variance (against 
which forecasts are measured). In addition, the inclusion of the sum of squared intraday 
returns in the Generalized ARCH(1,1) model yields improvements in the modelling, and 
most notably forecasting, of realized daily variance. This appears to be an artifact of the 
noise inherent in using the daily squared return as an estimator of realized daily variance. 
 
This paper demonstrates that whilst standard econometric models do not capture the 
intraday foreign exchange return generating process, this should not immediately 
preclude these models from high frequency applications. Instead, the forecasting exercise 
demonstrates practical benefits are easily attainable from using high frequency data to 
develop and evaluate existing asset pricing models.                      
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1.  Introduction 
 
The application of misspecified asset pricing models has the potential to induce the 
mispricing of financial assets, in turn leading to serious implications for portfolio 
selection and risk management. As such, exercises attempting to establish an accurate 
representation of asset price movements are non-trivial. Indeed, the past four decades 
have spawned a voluminous literature attempting to develop models consistent with the 
behaviour of speculative prices. Arguably the most celebrated of these is Engle�s (1982) 
autoregressive conditional heteroskedasticity (ARCH) model, designed primarily to 
capture the positive serial correlation in financial market volatility1.  
 
In recent times, the asset pricing literature has become increasingly interested in using 
high frequency data to address a range of issues in financial markets. This interest has 
been fueled by the development of intraday databases spanning a host of financial 
instruments and markets2. Much of the high frequency analysis has centered on the 
largest market of all � the foreign exchange market3. This research has resulted in a richer 
understanding of the intraday foreign exchange return generating process (RGP), 
revealing some behaviours that were not observed at lower frequencies. Discoveries of 
this nature have stimulated the development of a new breed of models designed to 
account for characteristics observed only in intraday markets4.  
 
At the same time as presenting researchers with new opportunities, these findings have 
also called into question whether established time series models are useful in high 
frequency applications. For instance, the ARCH family of models were originally 
developed to capture features of financial time series measured at daily and lower 
frequencies. Recent studies have argued that standard ARCH processes are unable to 
replicate the autocorrelation structure of intraday (squared and absolute) returns5. In 
addition, ARCH type models provide seemingly poor forecasts of daily volatility when 
judged by standard forecast evaluation criteria (see Andersen and Bollerslev, 1998). 
Predictably, these findings have led to the perception that ARCH models are of limited 
practical use in high frequency studies. The primary contribution of the current exercise 
is to address this issue from two perspectives.   
 
 

                                                 
1 Bollerslev, Chou and Kroner (1992) and Bera and Higgins (1993) review a number of univariate and 
multivariate applications of ARCH models involving equity, debt, foreign exchange and derivative pricing. 
2 Sources of intraday data sets are discussed by Goodhart and O�Hara (1997) and Bollerslev and Zhou 
(2001). Goodhart and O�Hara (1997) also provide an excellent survey of the applications and issues 
associated with the use of high frequency financial market data. 
3 Note that the operations of intraday foreign exchange traders account for more than ninety percent of 
foreign exchange market volume (Dacorogna, Gencay, Müller, Olsen and Pictet, 2001). 
4 For instance, the Heterogeneous ARCH model of Müller, Dacorogna, Dave, Olsen, Pictet and von 
Weizsacker (1997) and the Fractionally Integrated Generalized ARCH model of Baillie, Bollerslev and 
Mikkelsen (1996) have been designed to capture the long memory of volatility observed in intraday returns. 
5 For instance, Dacorogna et al. (2001) and Zumbach (2002) argue that the Generalized ARCH(1,1) model 
assumes an exponential decay in volatility autocorrelation, whereas the autocorrelation of intraday foreign 
exchange volatility typically decays at a hyperbolic rate. 
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First, a Monte Carlo procedure is used to test whether high frequency foreign exchange 
RGP�s can be approximated by the distributional characteristics of popular stochastic 
processes. The simulation exercise uses parameter values obtained by fitting these models 
to foreign exchange returns measured at different intraday frequencies. Using a simple 
test, the unconditional distribution of returns simulated by a range of ARCH models is 
compared to the unconditional distribution of high frequency foreign exchange returns.  
 
Second, one-step-ahead daily volatility forecasts generated by the ARCH class of models 
are assessed. A statistical evaluation of model forecasts is supplemented with a 
profitability measure based on trading option contracts. Following Engle, Hong, Kane 
and Noh (1993) and Maheu and McCurdy (2001), model estimates of ex-ante volatility 
are used to price European-style options combined into a straddle position. A trading 
game in a pseudo options market is devised, where the criterion for success is profits 
associated with trading foreign exchange straddle contracts. In the forecasting exercise, 
realized daily volatility (referred to as realized daily variance henceforth) is defined as 
the summation of intraday squared returns. The paper demonstrates that this measure of 
realized variance substantially reduces the noise that plagues the use of the daily squared 
return for the same purpose.  
 
The main findings of the paper are as follows. The simulation exercise demonstrates that 
the ARCH family of models is unable to reproduce the unconditional distribution of 
foreign exchange returns at frequencies higher than 24 hours. This is largely a legacy of 
the heavy-tailed feature of intraday returns. However, results from the forecasting 
analysis extend those in Andersen and Bollerslev (1998) by showing that a range of 
standard volatility models can in fact produce accurate forecasts of realized daily 
variance. In other words, it is possible for ARCH models to predict variability in the 
conditional second moment of daily foreign exchange returns. This is attributed to the use 
of frequently sampled data in the construction of estimates of realized variance (against 
which forecasts are measured). In addition, the inclusion of the sum of squared intraday 
returns in the Generalized ARCH(1,1) model yields improvements in the modelling, and 
most notably forecasting, of realized daily variance. This appears to be an artifact of the 
noise inherent in using the daily squared return as an estimator of realized daily variance. 
 
This paper demonstrates that whilst established econometric models do not capture the 
intraday foreign exchange RGP, this should not immediately preclude these models from 
high frequency applications. Instead, the forecasting exercise demonstrates practical 
benefits are readily attainable from using high frequency data to develop and evaluate 
existing asset pricing models.                      
                               
The remainder of the paper is organized as follows. The features of the data are presented 
in section 2. Section 3 presents the models that constitute high frequency foreign 
exchange RGP�s under the null hypothesis. Section 4 presents the simulation exercise 
investigating whether these models are able to reproduce the moments of intraday and 
daily exchange rate returns. Model forecasts of realized daily variance are evaluated in 
section 5. Conclusions are drawn and suggestions for future research offered in section 6. 
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2.  Data 
 
The data set consists of spot foreign exchange prices for the following four currencies 
expressed against the US Dollar: the Australian Dollar (USD/AUD), the British Pound 
(USD/GBP), the Deutschemark (DEM/USD) and the Japanese Yen (JPY/USD)6. The 
spot rates were obtained from Olsen and Associates, a Zurich based institute specializing 
in the collection and analysis of high frequency foreign exchange data. The sample 
consists of continuously recorded five-minute bid and ask prices from January 1, 1997, 
00:00 GMT through December 31, 1998, 00:00 GMT, for a total of 210,240 observations. 
Five-minute prices were defined as the midpoint of the bid and ask. Prices measured at 
thirty-minute, hourly, eight-hourly and daily frequencies were obtained by sampling from 
this initial grid of five-minute prices (ie. hourly prices were obtained by observing the 
midpoint of the bid and ask on the stroke of each hour). Continuously compounded 
returns were formed by taking the first difference of logarithmic prices.  
 
Whilst it is possible to trade currencies 24 hours per day, 7 days a week, there are clearly 
periods such as weekends and holidays during which there will be very low trading 
activity, a phenomenon that has the potential to generate seasonal effects. As such, 
weekend prices covering the period from Friday 21:05 GMT to Sunday 21:00 GMT were 
removed from the sample following Maheu and McCurdy (2001) among others.  Quiet 
trading days falling on fixed holidays (December 24-26,31, January 1-2) as well as 
moving holidays (Good Friday, Easter  Monday, Memorial Day, July Fourth, Labor Day 
and Thanksgiving) were also eliminated following Maheu and McCurdy (2001). In sum, 
deseasonalizing by removing days with abnormally low trading activity resulted in a final 
sample of 144,864 five-minute returns spanning 503 days.  
 

3.  Possible Representations of High Frequency Exchange Rate Behaviour 
 
This section presents the models consistent with high frequency foreign exchange RGP�s 
under the null hypothesis. Prior to simulating unconditional return distributions for these 
processes, parameter values must first be determined. This is achieved by estimating the 
parameters (using Maximum Likelihood) from models fitted to foreign exchange returns 
measured at daily and intraday frequencies.  
 
Many statistical processes proposed in the asset pricing literature, and consequently those 
investigated in this study, are assumed to follow the general formula below describing 
equally spaced continuously compounded returns rt,    
 

ttttt ppr εσµ ⋅+=−= −1lnln                                         (1) 
 

                                                 
6 The DEM/USD was the most actively traded foreign currency during the sample.  The JPY remains the 
second most heavily traded currency against the USD, the GBP the third, and the AUD the ninth; see 
Dacorogna et al. (2001) for average daily tick volumes. During this period, the DEM/USD and JPY/USD 
constituted the main axes of the international financial system, and thus spanned the majority of the 
systematic currency risk faced by most large institutional investors and international corporations. 



 - 5 - 

where  εt  is an identically and independently distributed (i.i.d.) random variable with zero 
mean and unit variance, σt is the square root of the variance of the return, µ is the constant 
drift and ln pt denotes the log price, with all variables defined at time t (besides the time-
invariant drift parameter, µ). To model the conditional variance of high frequency 
exchange rate returns, the following parametric specifications are employed7. 
 
3.1  Generalized ARCH (GARCH)   
Many studies have found Bollerslev�s (1986) GARCH(1,1) model provides a reasonable 
first approximation to the temporal dependencies observed in financial asset returns8. As 
such, the GARCH(1,1) formulation is the first process considered as a possible 
representation of high frequency exchange rate behaviour. This model specifies the 
conditional variance of the current period return as a function of the conditional variance 
of the last period�s return, 2

1−tσ , updated by the news revealed by last period�s return 2
1−tε ,  

                                     
2

1
2

1
2

−− ⋅+⋅+= ttt σβεαγσ                                             (2) 
 

where the stationarity condition imposes α + β <1, and to ensure a well-defined process, 
γ >  0, α ≥  0, and β ≥  0. Some authors have suggested the assumption of normally 
distributed error terms in the GARCH(1,1) model may not be sufficient to capture the 
excess kurtosis commonly observed in high frequency returns (see McCurdy and 
Morgan, 1988, Hsieh, 1989, and Baillie and Bollerslev, 1989). Consequently, this model 
is estimated assuming the error term conforms to either a normal or Student-t distribution. 
 
3.2  GARCH-I: GARCH(1,1) extended with Intraday Information 
Andersen and Bollerslev (1998) show that whilst the daily squared return is an unbiased 
estimator of ex-post daily variance, it is also an extremely noisy one. In response to this, 
Martens (2001) augments the standard GARCH(1,1) model with a variable, It-1, 
comprising the sum of thirty-minute squared returns (this is referred to as the GARCH-I 
model henceforth). The conditional variance is defined by, 
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−−− ⋅+⋅+⋅+= tttt Iκσβεαγσ                                     (3) 
 

where the stationarity condition  imposes α + β + κ <1. To ensure the process is well-
defined, γ >  0, α ≥  0, β ≥  0 and κ ≥  0. The intuition behind this model is simple: if the 
standard GARCH(1,1) model is fitted to daily returns, and on the previous trading day the 
return was zero but prices fluctuated heavily during the day, the lagged squared return 
(equal to zero) provides misleading information. By extending the standard GARCH 
model with intraday returns, this specification is able to capture the information that the 
previous trading day was actually quite volatile9. In this case, the It-1 variable would be 
defined as the sum of 48 thirty-minute squared returns over the day. 

                                                 
7 A similar treatment of alternative models, including those which simultaneously incorporate jumps and 
stochastic volatility, is beyond the scope of the present analysis and is left for future research.  
8 For instance, see Engle and Bollerslev (1986) and Bollerslev (1987) for early evidence. 
9 This intuition provides a partial explanation for the success of including the daily high and low price (see 
Parkinson, 1980, Garman and Klass, 1980, Beckers, 1983, and Taylor, 1987, among others), daily volume 
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3.3  Exponential GARCH (EGARCH) 
A possible limitation of the GARCH formulations described above is that the conditional 
variance is assumed symmetric in the lagged error terms. In response to this, Nelson 
(1991) proposed the EGARCH model specifically to capture the (negative) correlation 
between variance and past returns (a phenomenon most frequently observed in equity 
markets)10. This model links the conditional variance to the deviation of the absolute 
magnitude of the lagged scaled residual from its mean, as well as the sign of this 
innovation. In another distinction from the GARCH model, there are no restrictions 
placed on the parameters of the EGARCH process to ensure non-negativity of the 
conditional variance, as a logarithmic form is used. The conditional variance of the 
EGARCH(1,1) model is given by, 
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where the stationarity condition imposes 1<β .  
 
3.4 Heterogeneous ARCH (HARCH) 
In attempting to capture the long memory of squared intraday returns described by Ding, 
Granger and Engle (1993), Müller et al. (1997) proposed the HARCH model11. The 
conditional variance of the HARCH process appears as a linear combination of the 
squares of aggregated returns measured at different intraday frequencies, 
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where γ > 0, αn > 0  and  αj ≥ 0 to ensure a well defined process. The conditional variance 
equation of a HARCH(3) model may help illustrate the properties of the model, 
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(Bessembinder and Seguin, 1993), number of price changes (Laux and Ng, 1993), and the standard 
deviation of intraday returns (Taylor and Xu, 1997) in studies attempting to model asset return variability. 
10 The GARCH model links the conditional variance to past squared innovations, implying the conditional 
variance is insensitive to the sign of past returns. The GJR GARCH model of Glosten, Jagannathan and 
Runkle (1993), the Nonlinear GARCH and Nonlinear Asymmetric GARCH models of Engle and Ng 
(1993) are alternative specifications to the EGARCH model that are also designed to capture the (negative) 
correlation between variance and the sign of past returns. 
11 Whilst the FIGARCH model of Baillie et al. (1996) has also been designed for a similar purpose, it 
cannot reproduce the lead-lag correlation feature of the HARCH model reported in Dacorogna et al. (2001).  
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3.5  Interpretation of Parameter Estimates 
The parameter values (estimated by maximum likelihood) for the GARCH(1,1) model 
with normal and Student-t distributed errors, the GARCH(1,1) model extended with 
cumulative intraday squared returns, the EGARCH(1,1) model and the HARCH model, 
are presented in Tables 1(a) and 1(b)12. Two features of the GARCH coefficient estimates 
are worthy of a brief discussion.  
 
Referring to Table 1(b), it is interesting to find the α parameter is dominated by the 
additional κ  parameter (representing intraday squared returns) in the GARCH-I model. 
Recall that the α parameter represents hourly, eight hourly or daily squared returns 
respectively, while the κ term represents the sum of 2, 16 or 48 thirty-minute squared 
returns respectively13. This suggests the sum of squared intraday returns provides a 
relatively less noisy update of the conditional variance, as noted in Martens (2001). 
 
Theoretical aggregation results are available for the GARCH(1,1) model (see Drost and 
Nijman, 1993 and Nelson and Foster, 1994)14. From this it can be inferred that if GARCH 
constitutes the RGP at one particular frequency, the behaviour of the data sampled at any 
other frequency can be determined by temporal aggregation or disaggregation of the 
original process. These implied processes can then be compared to the empirically 
estimated processes at the same frequencies. The figures presented in the �implied� 
columns in Table 1(a) use the daily estimations as a reference basis to imply out the 
parameter values for the higher frequencies (ie. via disaggregation)15. The estimated 
coefficients appear quite reasonable, moving in the direction suggested by disaggregation 
in the majority of cases. For instance, as the data is sampled more frequently, the α 
parameter slowly approaches zero from above while the β parameter approaches unity 
from below16. This results in the autoregressive root of the conditional variance process, 
α + β, also approaching unity, implying shocks to the conditional variance become more 
persistent as the sampling frequency increases17. Given the GARCH(1,1) coefficients 
generally appear well behaved (according to disaggregation theory), they should facilitate 
a reliable analysis in the simulation exercise that follows18. 

                                                 
12 Diagnostic results for the standardized residuals are presented in the Appendix. 
13 Note at the half hour frequency, the α and κ parameters both represent thirty-minute squared returns. 
14 Of the models presented in section 3, aggregation results are only available for the GARCH model.  
15 The daily frequency is used as the reference basis, given that at this time horizon, the GARCH(1,1) 
model has served as a reasonable approximation of the RGP for a range of asset classes. 
16 In this context, the GARCH model can be interpreted as either a jump process according to Drost and 
Nijman (1993), or a diffusion process based on the results presented in Nelson and Foster (1994). 
17 The two most flagrant exceptions occur at the hourly frequency for the JPY/USD for the GARCH model 
assuming normally distributed errors, and the DEM/USD for the GARCH model with Student-t errors. 
18 A number of studies have documented that explicitly accounting for intraday seasonal volatility patterns 
does not have a discernible impact on the modelling ability (see Andersen and Bollerslev, 1997b, and 
Dacorogna et al., 2001) or forecasting performance (see Martens, 2001) of ARCH processes. However, to 
circumvent the potential problem of coefficient estimates becoming biased if these intraday patterns are not 
treated, the simulations for the GARCH(1,1) model (with normal and Student-t errors) were also performed 
using the intraday parameter values implied from the coefficient estimates of the GARCH(1,1) model fitted 
to daily returns (whose parameters are unaffected by intraday seasonality). The qualitative results from this 
method and the method using maximum likelihood coefficients from models fitted directly to intraday 
returns were indistinguishable, so for consistency only those based on the latter approach are reported. 
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[INSERT TABLE 1(a) & (b)] 
 

4. Comparing the Unconditional Distribution of Empirical and Simulated Returns   
 
This section investigates whether the unconditional distribution of high frequency foreign 
exchange returns can be approximated by the unconditional distribution of returns 
simulated by the ARCH models presented in the previous section. 
 
4.1  Simulating Discrete Time Volatility Models 
In the Monte Carlo procedure, simulated residuals are generated by sampling from the 
i.i.d. standard normal (0,1) random number generator19. The simulated residuals are 
combined with the conditional mean to form a series of simulated returns following 
equation (1). The conditional variance of simulated returns is determined by a 
GARCH(1,1), GARCH-I, EGARCH(1,1), or HARCH process (as outlined in section 3), 
using the parameter values in Table 1(a) and 1(b).  
 
4.2   Simulating the GARCH(1,1) model in Continuous Time: GARCH Diffusion 
A continuous time GARCH diffusion process may also be capable of reproducing the 
distributional characteristics of intraday exchange rate returns. In line with many 
theoretical asset pricing models and derivative pricing theories, it is assumed that 
instantaneous returns are generated by the continuous time martingale,  
 

tptt dWpd ,ln ⋅= σ                                              (7) 
 

where dln pt is the instantaneous change in the log price and σt is a stochastic process 
independent of the instantaneous change in the standard Weiner process, dWp,t

20. A 
natural continuous time model for the conditional variance process is given by the 
diffusion limit of the GARCH(1,1) process as developed by Nelson (1990), 
 

tttt dWdtd ,
25.022 )2()( σσλθσωθσ ⋅+⋅−=                             (8) 

 
where ω > 0, θ > 0, 0 < λ < 1, and the Weiner processes, Wp,t  and Wσ,t, are independent. 
The exact relationship between the discrete time weak GARCH(1,1) parameters and the 
continuous time stochastic volatility parameters in equation (8) can be expressed by, 
 

                                                                                                                                                 
Furthermore, the GARCH diffusion coefficients (presented in section 4) are unaffected by intraday 
seasonal volatility patterns as the intraday parameters are implied from the GARCH(1,1) model fitted to 
daily returns. Note also that even after conducting the simulation exercise for the GARCH-I, 
EGARCH(1,1) and HARCH models using a range of different coefficient estimates, the qualitative results 
remained unchanged. This suggests that even if the parameter estimates were slightly affected by intraday 
seasonal volatility patterns, for the purposes of this study, the impact would have been negligible. 
19 Simulated returns for the GARCH(1,1) model are also generated by using residuals sampled from the 
Student-t random number generator. Note that the seed was kept fixed while generating the random 
numbers for each of the simulated models. 
20 Any mean predictability could easily be incorporated into this model, but the assumption of mean-zero 
returns in (7) is consistent with the empirical evidence for the four exchange rates in this analysis. 
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with a sampling frequency m times per day (ie. m = 24 for hourly modelling when the 
stochastic volatility parameters are implied by the α and β parameters fitted to daily 
returns). Equation (9) implies that limm→∞ (α + β) = 1, so the weak GARCH(1,1) model 
converges to the IGARCH case of Engle and Bollerslev (1986) as the sampling frequency 
increases. Therefore, this diffusion approximation provides a possible explanation for the 
empirical findings of IGARCH behaviour in high frequency asset returns, as noted by 
Nelson (1990).  The numerical simulations of the model in equations (7) and (8) are 
performed using a standard Euler discretization scheme as follows, 
 

tpttt wpp ,
5.0lnln ⋅∆⋅+=∆+ σ                                          (12) 

 
)]2[1( ,

5.022
ttt wσθλθσωθσ ⋅∆⋅⋅⋅+∆⋅−⋅+∆⋅⋅=∆+                       (13) 

 
 

where wp,t and wσ,t denote independent standard normal variables. Following Andersen 
and Bollerslev (1998), in the implementation ∆ = 1/2880, corresponding to ten 
observations per five-minute interval. 
 
4.3  Tests for Comparing the Distribution of Empirical and Simulated Returns 
To test if the simulated and empirical unconditional return distributions are significantly 
different, this study tests whether the unconditional moments of the empirical distribution 
lie inside the 95th or 99th percentiles of the unconditional simulated moments.  
 
Each sample path of simulated returns produces an associated mean, standard deviation, 
skewness and kurtosis. Given that 10,000 return paths are simulated for each model, this 
results in the generation of 10,000 values for each of the first four moments21. Rather 
than taking a single number (such as the average, median etc.) as being representative of 
these 10,000 values, the test uses confidence intervals based on the entire distribution of 

                                                 
21 1,000 warm-up replications were performed prior to basing the results on a further 10,000 replications.   
Also note that the number of observations used in the simulation exercise corresponded to the number in 
the empirical sample. This resulted in 24,114 observations for the thirty-minute series, 12,057 for the 
hourly series, 1507 for the eight-hour series and 503 for the daily series. All simulations were performed in 
RATS programming language.   
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values. To illustrate, assume that the empirical moment lies inside the 95th percentile of 
the simulated moments. In this instance, the null hypothesis that the simulated and 
empirical moments are insignificantly different cannot be rejected at the 5 percent level. 
If the empirical moment lies outside the 95th percentile of the simulated moments but 
inside the 99th percentile, the null is rejected at the 5 percent level, but not at the 1 percent 
level. If the empirical moment lies outside the 99th percentile of the simulated moments, 
the null is rejected at the 1 percent level. A model can be considered representative of the 
true RGP only when all four empirical (unconditional) moments are insignificantly 
different to the unconditional moments of the simulated process. 
 
4.4 Statistical Properties of High Frequency Foreign Exchange Returns 
The existence of volatility clustering in squared returns measured at different frequencies 
has been extensively documented, dating back to Mandelbrot (1963) and Fama (1965). 
This feature is ubiquitous in Figure 1, with DEM/USD squared returns (measured at the 
thirty-minute, hourly, eight-hourly and daily frequencies) exhibiting well-defined periods 
of tranquility and turbulence22. The visual impression of volatility clustering is confirmed 
by the Ljung-Box portmanteau tests for serial correlation in squared returns presented in 
Table 2. The Q-statistics based on squared returns over different frequencies for each of 
the exchange rates are highly significant. The Lagrange multiplier test applied to squared 
returns confirms the existence of ARCH disturbances. 
 

[INSERT FIGURE 1] 
 
The figures presented in Table 2 also highlight the extreme departures from normality 
exhibited by intraday foreign exchange returns. Whilst mean returns are indistinguishable 
from zero, at each frequency almost all exchange rates are significantly skewed away 
from zero. In addition, excess kurtosis is rife in that the values exceed 3, which is the 
theoretical value for a Gaussian distribution. All of the rates display the same general 
behaviour. For instance, a decreasing kurtosis is associated with a coarser sampling 
frequency, and at the shortest time intervals, the kurtosis values are extremely large. The 
standard deviation of returns increases dramatically as the frequency increases, though is 
quite stable when expressed in annualized terms. Figure 1 and Table 2 are entirely 
consistent with the statistical features of financial asset returns reported in the literature. 
 

[INSERT TABLE 2] 
 

4.5   Results of the Tests Comparing Empirical and Simulated Return Distributions 
Table 3 presents the results of the Monte Carlo exercise examining whether the 
unconditional moments of the empirical distribution lie inside the 95th and 99th 
percentiles of the unconditional simulated moments. In this table, �accept� refers to 
occasions where the null hypothesis that the simulated and empirical moments are the 
same cannot be rejected at the 5 percent level; �5%� refers to instances where the null is 
rejected at the 5 (but not the 1) percent level; and �1%� refers to instances where the null 
is rejected at the 1 percent level.  
 
                                                 
22 Similar patterns of volatility clustering were exhibited by each currency across different frequencies.  
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The GARCH(1,1) model with normal errors does a reasonable job at characterizing the 
unconditional mean and standard deviation of exchange rate returns at different 
frequencies. However it cannot be considered representative of the true RGP as it fails to 
reproduce the behaviour of the third and fourth moments of the empirical return 
distribution at frequencies higher than a calendar day (24 hours). As expected, the 
GARCH(1,1) specification following a Student-t distribution performs slightly better at 
capturing the behaviour of the unconditional fourth moment than its normal-error 
counterpart. The results for the GARCH-I model are similar to those reported for the 
GARCH(1,1) models. As anticipated, it appears the EGARCH(1,1) model is fairly 
successful in tracking the skewness associated with exchange rate returns at the trading 
day (eight hour) and calendar day frequencies. The unconditional fourth moment of 
returns simulated by the HARCH model and the continuous time GARCH diffusion - in 
fact all the models examined here � are unable to approximate the leptokurtic 
unconditional fourth moment of high frequency foreign exchange returns. 
 
In reconciling these results with related research, Müller et al. (1997) suggest ARCH 
models are incapable of replicating intraday foreign exchange RGP�s due to a range of 
independent volatility components inherent in high frequency data. They imply the 
GARCH model is unable to capture the heterogeneity of traders acting under different 
time horizons and objectives. Andersen and Bollerslev (1997a) claim standard ARCH 
models cannot accommodate the regular cyclical patterns in intraday volatility associated 
with the opening and closing times of financial centers around the world. At the highest 
frequencies, institutional and behavioural features of the trading process such as non-
synchronous trading, the bid-ask bounce and other microstructure effects may also 
preclude ARCH models from constituting the intraday RGP. 

 
[INSERT TABLE 3] 

 
The results presented in Table 3 show the ARCH class of models are reasonably 
successful in approximating high frequency foreign exchange RGP�s only at the calendar 
day frequency. This is not surprising given the ARCH family of models were originally 
developed to capture features of financial time series measured at daily and lower 
frequencies. The analysis presented thus far appears to support the findings in related 
studies, suggesting standard ARCH processes may be of limited use in high frequency 
applications. However, arguably the most rigorous test of the veracity of an asset price 
model is its ability to forecast future movements in a state variable. The most critical 
feature of conditional financial asset return distributions is the structure of the second 
moment - the dominant time-varying moment. Given that volatility permeates modern 
financial theories and the functioning of markets, it is non-trivial to investigate the 
performance of ARCH models in forecasting the conditional second moment of daily 
foreign exchange returns. 
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5. Forecasting Daily Variance with ARCH Models 
 
In this section, one-step-ahead daily variance forecasts are assessed via a host of 
statistical procedures, given no universally accepted loss function exists for the ex-post 
evaluation and comparison of model forecasts. In addition to the statistical evaluation, 
forecasts are assessed using a profitability measure based on a trading game in a pseudo 
options market. Model parameters are estimated from daily returns from January 3, 1997 
through June 30, 1998, leaving the period July 1, 1998 through December 30 (125 days) 
in which to assess the forecasts23.  
 
Note that the HARCH model is not used in the daily forecasting exercise given the 
parameter values from the model fitted to daily returns violated the associated stationarity 
conditions (see the notes under Table 1(b)). In addition, the theoretical GARCH diffusion 
framework is not designed for empirical implementations, so it is also excluded from the 
forecasting analysis. These two models are replaced with a nonparametric autoregressive 
(AR) process, and J.P. Morgan�s Riskmetrics� model. The AR estimator simply uses the 
daily realized variance (defined as the sum of thirty-minute squared returns) as the 
variance forecast for the following day. In the Riskmetrics� model, the conditional 
variance of the current period return appears as a function of the conditional variance of 
yesterday�s return 2

1−tσ , updated by the news revealed by yesterday�s return 2
1−tε ,  

 
2

1
2

1
2 )1( −− ⋅−+⋅= ttt εψσψσ                                         (14) 

 
where returns are sampled once per day. Whilst (14) bears some resemblance to the 
GARCH(1,1) process, Riskmetrics� differs from the GARCH model in a number of 
ways. For instance, Riskmetrics� does not allow for mean reversion in variance 
forecasts, and rather than estimating parameters on each data set using an optimization 
method, it fixes the only parameter, ψ, equal to 0.94. According to J.P. Morgan (1996), 
this value has been found to optimize the daily forecasting quality of (14) over a range of 
financial assets and test periods24.  
 
5.1  Constructing Estimates of Realized Variance 
To evaluate the forecasting performance of competing models, forecasts must be 
compared to some measure of realized daily variance. It is common to see the daily 
squared return used for this purpose. Whilst the daily squared return is an unbiased 
estimator of ex-post daily variance, Andersen and Bollerslev (1998) point out it is also an 
extremely noisy one as the idiosyncratic component of daily returns is large. Prior to this, 
Merton (1980) demonstrated that latent (true but unobservable) variance can be 
approximated to an arbitrary precision by using the sum of intraday squared returns25. 
                                                 
23 As only 503 daily observations (from January 3, 1997, through to December 30, 1998) were available for 
the study, parameters used in the simulation exercise were based on the full sample period so as to utilize 
all the available data. To facilitate an out-of-sample forecasting analysis, parameters were re-estimated over 
the first 18 months of this period, leaving the remaining 125 days in which to assess the forecasts.  
24 As the Riskmetrics� model has a parameter with a fixed value based on the use of daily data, it was not 
appropriate to use the model in the intraday simulation exercise. 
25 However, market microstructure effects may make sampling at the very highest frequencies problematic. 
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The figures in Table 4 highlight the advantage of using the sum of squared intraday 
returns, rather than the squared daily return, as the estimator of realized daily variance. In 
particular, the range and standard deviation of the ex-post daily realized USD/AUD and 
USD/GBP variance fall by more than 50% upon replacing the daily squared return with 
the sum of five-minute intraday squared returns. Consequently, realized daily variance is 
defined as the sum of intraday squared returns in the forecasting exercise that follows. 
This quantity is fully observable and provides a nonparametric estimate of latent variance 
over the same time interval.   
 

[INSERT TABLE 4] 
 

5.2  Statistical Analysis  
The first metric used to evaluate daily variance forecasts is the coefficient of 
determination (R2) resulting from the regression of realized daily variance, 2

, ktreal +σ , on its 

forecast, 2� kt+σ ,  
 

ktktktreal e +++ +⋅+= 2
10

2
, �σϕϕσ                                         (15) 

 
where k=1 (corresponding to one step ahead daily forecasts)26. If the conditional mean of 
returns is zero, and the conditional variance is specified correctly, φ0 and φ1 should equal 
zero and one respectively. However this regression is sensitive to extreme values, so the 
coefficient of determination from the log form of (15) may also be useful, 
 

 ktktktreal e +++ +⋅+= )�log()log( 2
10

2
, σϕϕσ                               (16) 

 
which is less sensitive to outliers than (15) as severe mispredictions are given relatively 
less weight. The remaining metrics used in the forecasting analysis are as follows, 

 

Root Mean Squared Error (RMSE) = ( )
21

0

2
,

2�1∑
−

=
++ −

T

t
ktrealktT

σσ               (17) 

 

Mean Absolute Error (MAE) = ∑
−

=
++ −

1

0

2
,

2�1 T

t
ktrealktT

σσ                      (18) 

 

 Mean Absolute Percent Error (MAPE) = ∑
−

= +

++ −1

0
2

,

2
,

2�1 T

t ktreal

ktrealkt

T σ
σσ

                 (19) 

 
Median Squared Error (MSE) = ( )22

,
2� ktrealktMedian ++ −σσ                   (20) 

 
where forecasts of realized daily variance are assessed over a period of T days. 
                                                 
26 Note that the R2 of this regression is the squared correlation between the realized and forecasted variance. 
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5.3   Results from the Statistical Evaluation of Daily Variance Forecasts 
Whilst significant in-sample intertemporal volatility persistence has been extensively 
documented in ARCH related research, a number of studies have found, albeit rather 
surprisingly, that ARCH models explain little of the variability in ex-post realized 
variance. These findings have been based on the measurement of ex-post realized 
variance as the squared or absolute return over the relevant forecast horizon in the 
regression of realized variance on the model forecast, as in equation (15)27.  Examining 
the figures in Table 5 from left to right in the �24-hr� rows appears to offer further 
support to the perception that daily ARCH forecasts are of limited practical use. The low 
R2�s for the one day ahead ARCH forecasts indicates these models perform very poorly, 
consistently explaining less than one percent of the ex-post variability in the USD/AUD, 
USD/GBP and DEM/USD realized daily variance, and less than four percent in JPY/USD 
realized daily variance.  
 
However, upon increasing the sampling frequency of squared returns in the measurement 
of ex-post realized daily variance, the fallacy of this conclusion becomes evident. For 
instance, when realized daily variance is defined as the sum of thirty-minute squared 
returns, the ARCH models produce R2�s as high as thirty-two percent for the USD/AUD, 
and fifty-six percent for the JPY/USD. Increasing the sampling frequency of realized 
variance to five-minutes results in even higher correlations, with R2�s as high as thirty-
eight percent for the USD/AUD and sixty-one percent for the JPY/USD. These statistics 
signify an enormous increase in explanatory power relative to the inference based on R2�s 
documented previously28. Combined with the figures in Table 4, these results support 
Andersen and Bollerslev�s (1998) argument that the poor predictive power of ARCH 
models, when judged by standard forecast evaluation criteria (ie. daily squared returns for 
daily forecasts), is a consequence of the noise inherent in the RGP. Furthermore, the 
trend of increasing R2�s associated with the use of squared intraday returns as the proxy 
for ex-post daily realized variance is also evident for the non-ARCH predictors - namely 
J.P. Morgan�s Riskmetrics� and the nonparametric AR estimator. Recall this AR 
estimator simply uses the realized daily variance (defined as the sum of thirty-minute 
squared returns) observed at the completion of the current day as the variance forecast for 
the following day. As such, the relatively high R2�s produced by the AR estimator is 
consistent with the volatility clustering phenomena displayed in Figure 1. 
 

[INSERT TABLE 5] 
 
In assessing the relative forecasting performance of the models in Table 5, recall that 
equation (15) regresses realized daily variance on the forecast of daily variance. Equation 
(16) mitigates the influence of outliers in equation (15) as it regresses the logarithm of 
realized variance on the logarithmic variance forecast. Using these metrics, Table 5 
shows the nonparametric AR estimator to be superior in the case of the USD/GBP and 

                                                 
27 See for example Cumby, Figlewski and Hasbrouck (1993), Figlewski (1994) and Jorion (1995, 1996). 
28 In the regression of realized daily variance on the model forecast in equations (15) and (16), the values of 
φ0  and  φ1 were generally indistinguishable from zero and one respectively when the regression produced a 
relatively high R2 (as expected). In instances where the regression in (15) and (16) produced a relatively 
low R2, the parameter values of  φ0  and  φ1 invariably deviated from zero and one respectively.  
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DEM/USD using equation (15), and the AUD/USD and GBP/USD following equation 
(16). On one occasion each, the GARCH(1,1) models assuming a normal and Student-t 
distribution perform best following (15), and both models are consistently second best, or 
close to it, following both (15) and (16). However, the GARCH-I model using the sum of 
intraday squared returns (from the previous day) is perhaps the most consistent of all 
models.  For the DEM/USD and JPY/USD it is the superior model following (16), and on 
two occasions it is the second best model using both (15) and (16).  It is also interesting 
to see that whilst honours are evenly split between the GARCH(1,1) with normal errors 
and the GARCH-I model following (15) (in that they outperform each other twice), the 
GARCH-I model produces relatively higher R2�s in every instance when the influence of 
extreme mispredictions is reduced following (16). The EGARCH model and J.P. 
Morgan�s Riskmetrics� are relatively inferior at forecasting realized daily variance.  
 
Table 6 presents the relative performance rankings of model forecasts, based on the loss 
functions described in section 5.2. Using the RMSE or Theil�s U statistic as the criterion, 
the GARCH(1,1) with Gaussian errors is the superior model, and is arguably the best 
performed when examining the MAE rankings also. The GARCH-I model appears to 
perform best under the MAPE and MSE criterion, while the AR estimator seems to be 
particularly useful in forecasting the variability in DEM/USD realized variance using any 
criterion. These results, coupled with those presented in Table 5, make it quite difficult to 
distinguish between the superiority of the GARCH(1,1) model with normal errors, the 
GARCH-I model augmented with intraday returns, and the simple AR estimator. The 
pseudo options market trading game presented next is used to establish which of these 
estimators generate superior forecasts of realized daily variance. 

 
[INSERT TABLE 6] 

 
5.4  Profitability Assessment of Daily Variance Forecasts: An �Economic� Interpretation  
This section follows Engle, Hong, Kane and Noh (1993) and Maheu and McCurdy 
(2001) by using a profitability measure to determine the relative ranking of competing 
variance forecasts. Ex-ante forecasts of daily variance are used to price at-the-money 
European put and call options (with the same maturity) on a spot foreign currency 
position following the Garman and Kohlhagen (1983) model29. A short time-to-expiration 
(one day) is used to better approximate the constant volatility assumption in the Black 
and Scholes (1973) formula.    
 
To make the pseudo options market operational, only two investors, A and B, are 
assumed to exist. Each investor is assigned their own forecasting model. Option contracts 
are combined into a straddle position with both investors computing a straddle price 
based on variance forecasts from their respective models30. Trades are initiated based on 
the investors comparing their straddle prices. For instance, if investor A�s straddle price 

                                                 
29 This is simply the Black and Scholes (1973) formula adapted to spot foreign currency positions. 
30 Straddles are a natural choice to gauge the relative merits of variance forecasting models as they can be 
used essentially as a bet on future volatility. A long (short) straddle position involves the simultaneous 
purchase (sale) of a call and a put option on the same currency. A long (short) straddle position will 
become profitable if realized volatility is substantially higher (lower) than the market expectation. 
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is greater than investor B�s, investor A buys one straddle from investor B (at the mid 
point of the two prices)31. Otherwise investor A takes a short position and sells one 
straddle to investor B. Straddles are repriced each day using updated one-day-ahead 
variance forecasts32. Once the next day�s spot price has been realized, payouts from the 
zero-sum game are calculated.  
 
The figures presented in Table 7 show that no clear winner emerges when the investors 
trade against one another using the AR and GARCH(1,1) estimators respectively. For 
instance, these predictors outperform each other twice, and on one of these two 
occasions, the profits generated (at the expense of the other) are statistically significantly 
different from zero. However, it is possible to infer from the remaining figures in Table 7 
that the GARCH-I model is the superior of the three, as it makes statistically significant 
profits at the expense of the AR estimator and GARCH(1,1) model for all but the 
USD/AUD contract33. This result can also be reconciled with the work in Nelson (1992) 
and Nelson and Foster (1995), who demonstrated theoretically that variance forecasts can 
be made as accurate as required for many diffusion models by using ARCH estimates and 
sufficiently frequent price measurements.  This suggests that using the sum of intraday 
squared returns in both the ex-post measurement of realized variance, as well as in the 
forecasting of variance directly, has valuable practical applications. 
 

[INSERT TABLE 7] 
 

6. Conclusion 
 
One of the many challenges posed by the study of high frequency financial market data is 
to develop models capable of explaining asset price behaviour at a range of frequencies. 
This presents researchers with new opportunities. However at the same time, it calls into 
question whether established time series models are useful in high frequency 
applications. This paper addresses this issue from two perspectives. A Monte Carlo 
procedure is used to investigate whether the unconditional distribution of high frequency 
foreign exchange returns can be approximated by the unconditional distribution of returns 
simulated by widely used ARCH models. The study then uses high frequency data to 
generate and evaluate forecasts of daily variance.  
 
 

                                                 
31 To illustrate this idea further, if investor A�s straddle price is say $10, then they will be willing to buy 
(sell) a straddle at any price below (above) $10, assuming no transaction costs. Now, if investor B�s 
straddle price is $9, it is reasonable to assume the trade would take place at the mid point of these two 
prices, here $9.50, given that investor A wishes to buy at the lowest possible price below $10, and investor 
B wishes to sell at the highest possible price above $9.    
32 These contracts were set at AUD$50,000, GBP£31,250, DM62,500 and ¥6,250,000 respectively, as is the 
case for standardized European currency option contracts traded on the Philadelphia Stock Exchange. In the 
pricing of the straddle contracts, the annualized domestic and foreign interest rates were arbitrarily assumed 
to equal 4 and 5 percent respectively. Different combinations of domestic and foreign interest rates yielded 
similar results to those reported in Table 7.  
33 Note that realized daily variance, against which the competing forecasts are measured, is defined as the 
sum of 48 thirty-minute squared returns in the trading game. 
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The simulation exercise demonstrates that the ARCH family of models is unable to 
reproduce the unconditional distribution of foreign exchange returns at frequencies higher 
than 24 hours. This is largely a legacy of the heavy-tailed feature of intraday returns. 
However, results from the forecasting analysis extend those in Andersen and Bollerslev 
(1998) by showing that a range of standard volatility models (not just the GARCH(1,1) 
model) can in fact produce accurate forecasts of daily variance. In other words, it is 
possible for ARCH models to predict variability in the conditional second moment of 
daily foreign exchange returns. This is attributed to the use of frequently sampled data in 
the construction of estimates of realized variance (against which forecasts are measured). 
In addition, the inclusion of the sum of squared intraday returns in the GARCH(1,1) 
model yields improvements in the modelling, and most notably forecasting, of realized 
daily variance. This appears to be an artifact of the noise inherent in using the daily 
squared return as an estimator of realized daily variance. 
 
This paper demonstrates that whilst established econometric models do not constitute the 
intraday foreign exchange RGP, this should not immediately preclude these models from 
high frequency applications. Instead, the forecasting exercise demonstrates practical 
benefits are easily attainable from using high frequency data to develop and evaluate 
existing asset pricing models.                      
 
Emerging interest in the field of high frequency finance has seen a new set of stylized 
facts specific to intraday foreign exchange (and other) markets begin to surface. For 
example, the identification of a hyperbolic long memory decay in the autocorrelation of 
volatility, and the associated implications for scaling laws and fractal structures are 
promising contemporary developments. No doubt a number of similar discoveries are 
waiting to be made. Given that the evolution of asset pricing models has largely been 
motivated by empirical findings and economic interpretations, future research along these 
lines may pave the way for the development of models consistent with the behaviour of 
asset prices across different frequencies. In the case of any successful achievement, 
benefits will extend across a range of financial applications, not limited to derivative 
pricing, portfolio selection and risk management. 
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Figure 1. Annualized Squared DEM/USD Returns Across Different Frequencies 

 

Figure 1 displays the time series of squared DEM/USD returns measured at different frequencies 
(converted to an annualized figure and expressed in percentage terms) from the period commencing 
January 3, 1997 through December 30, 1998 inclusive. 
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Table 1(a).  Empirical and Implied GARCH(1,1) Parameter Estimates 
  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Table 1(a) presents the parameter estimates for the GARCH(1,1) model with the error term following a 
normal and Student-t distribution. The conditional variance equation is defined in equation (2) for the 
GARCH(1,1) model. The υ parameter in the GARCH(1,1) model with Student-t errors refers to the 
corresponding degrees of freedom. Standard errors are reported in parenthesis. Table 1(a) also presents the 
disaggregation results where the GARCH(1,1) parameters estimated on daily data serve as the reference 
basis for implying out the higher frequency parameters. The figures in the implied columns (underneath the 

α� and β� coefficients) are implied from Drost and Nijman�s (1993) disaggregation formulas.   
 
 

υ
30 Minutes
USD/AUD 0.32 0.013 0.984 0.004 0.993 0.94 0.014 0.985 3.19 0.003 0.996

(0.01) (0.000) (0.000) (0.09) (0.001) (0.001) (0.05)
USD/GBP 0.43 0.012 0.981 0.006 0.987 0.65 0.015 0.985 3.27 0.005 0.991

(0.02) (0.000) (0.001) (0.08) (0.001) (0.001) (0.05)
DEM/USD 0.29 0.009 0.987 0.036 0.911 0.10 0.015 0.985 3.01 0.033 0.938

(0.01) (0.000) (0.000) (0.04) (0.001) (0.001) (0.06)
YEN/USD 0.69 0.014 0.982 0.75 0.014 0.984 3.02

(0.03) (0.000) (0.000) (0.04) (0.001) (0.001) (0.05)
1 Hour
USD/AUD 0.71 0.017 0.980 0.002 0.995 2.73 0.014 0.980 3.31 0.001 0.996

(0.05) (0.001) (0.001) (1.26) (0.002) (0.002) (0.06)
USD/GBP 3.05 0.033 0.944 0.004 0.991 1.16 0.014 0.981 3.44 0.002 0.992

(0.15) (0.001) (0.002) (0.20) (0.002) (0.003) (0.08)
DEM/USD 2.02 0.025 0.961 0.018 0.936 6.22 0.018 0.825 3.17 0.009 0.943

(0.88) (0.001) (0.001) (1.03) (0.003) (0.025) (0.07)
YEN/USD 28.45 0.119 0.808 7.35 0.013 0.980 3.19

(0.78) (0.004) (0.005) (1.52) (0.001) (0.002) (0.07)
8 Hours
USD/AUD 32.28 0.060 0.922 0.003 0.993 16.70 0.038 0.927 5.61 0.007 0.990

(6.21) (0.007) (0.009) (7.02) (0.008) (0.015) (0.83)
USD/GBP 44.79 0.023 0.923 0.007 0.988 7.41 0.009 0.958 4.17 0.013 0.982

(14.26) (0.005) (0.008) (3.61) (0.004) (0.018) (0.36)
DEM/USD 27.01 0.021 0.957 0.030 0.927 14.17 0.011 0.956 3.84 0.046 0.914

(10.33) (0.005) (0.012) (6.17) (0.004) (0.020) (0.50)
YEN/USD 140.93 0.054 0.900 14.98 0.015 0.956 3.46

(32.30) (0.006) (0.012) (7.01) (0.004) (0.010) (0.33)
24 Hours
USD/AUD 360.14 0.065 0.785 0.013 0.983 182.62 0.064 0.851 6.96 0.002 0.996

(175.84) (0.030) (0.056) (81.46) (0.028) (0.053) (2.27)
USD/GBP 314.06 0.027 0.843 0.024 0.967 153.21 0.014 0.850 6.36 0.004 0.992

(33.13) (0.011) (0.019) (16.89) (0.006) (0.112) (2.11)
DEM/USD 834.24 0.043 0.833 0.100 0.830 285.03 0.062 0.822 7.03 0.027 0.940

(333.85) (0.021) (0.198) (27.72) (0.016) (0.117) (2.31)
YEN/USD 1461.35 0.141 0.663 350.27 0.057 0.847 5.27

(387.67) (0.027) (0.061) (106.20) (0.024) (0.060) (1.23)

(normal)
GARCH(1,1)
(Student-t )

Implied Implied

GARCH(1,1)

810⋅γ 810⋅γα β α βα� β� α� β�
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Table 1(b).  GARCH-I, EGARCH and HARCH Parameter Estimates 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Table 1(b) presents the parameter estimates for the GARCH(1,1) model extended with the sum of thirty-
minute intraday squared returns (referred to as GARCH-I model), along with parameter estimates for the 
EGARCH(1,1) and HARCH models. The conditional variance equation is defined in equation (3) for the 
GARCH-I model, equations (4) and (5) for the EGARCH model, and equation (6) for the HARCH model. 
Standard errors are reported in parenthesis. When reporting parameter values for the HARCH model in 
equation (6), Muller et al. (1997) suggest that the coefficients αj reflect the relative impact of different 
market components, i, via different relevant time intervals. Therefore, the impact, IMPi,, of the ith 

component can be defined as, 
i

ii
i

i
qqqqIMP α
2

1)1(
21

2 ++−=
−−

−  where the j ranges are separated by 

powers of a natural number q, so the typical time interval size of a component differs from that of the 
neighbor component by a factor q (which is set equal to 4). Components of the HARCH model estimated 
for frequencies lower than 1 hour are not reported due to violation of the stationarity condition, which 
imposes that the sum of these impacts lie inside the unit circle. See Muller et al. (1997) for further 
discussion of the properties of the HARCH process 
 
 

IMP 1 IMP 2 IMP 3 IMP 4

30 Minutes
USD/AUD 0.03 0.01 0.98 0.01 0.03 0.03 1.00 0.04 0.72 0.16 0.40 0.30 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00)
USD/GBP 0.04 0.01 0.98 0.01 0.36 0.35 0.83 0.03 0.50 0.14 0.21 0.36 0.17

(0.00) (0.00) (0.00) (0.00) (0.04) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00)
DEM/USD 0.03 0.00 0.99 0.00 0.85 0.27 0.09 0.05 0.56 0.14 0.28 0.51 0.00

(0.00) (0.00) (0.00) (0.00) (0.03) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00)
YEN/USD 0.07 0.01 0.98 0.01 0.05 0.02 1.00 0.24 1.56 0.14 0.24 0.21 0.28

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.01) (0.00) (0.01) (0.00) (0.00)
1 Hour
USD/AUD 0.07 0.00 0.98 0.02 0.04 0.04 1.00 0.04 1.95 0.15 0.27 0.56 0.00

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.03) (0.01) (0.00) (0.00) (0.00)
USD/GBP 0.18 0.00 0.95 0.03 0.59 0.36 0.73 0.12 0.98 0.15 0.20 0.57 0.00

(0.01) (0.00) (0.00) (0.00) (0.10) (0.01) (0.01) (0.02) (0.02) (0.01) (0.00) (0.00) (0.00)
DEM/USD 0.27 0.01 0.60 0.24 0.95 0.28 0.83 0.05 1.03 0.15 0.38 0.07 0.01

(0.01) (0.00) (0.01) (0.01) (0.06) (0.01) (0.00) (0.02) (0.02) (0.01) (0.00) (0.01) (0.00)
YEN/USD 3.03 0.07 0.78 0.17 0.09 0.04 0.99 0.10 3.33 0.14 0.25 0.48 0.00

(0.08) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.03) (0.03) (0.01) (0.00) (0.00) (0.00)
8 Hours
USD/AUD 3.18 0.01 0.89 0.08 0.17 0.13 0.98 0.16

(0.81) (0.01) (0.02) (0.01) (0.04) (0.01) (0.00) (0.08)
USD/GBP 1.76 0.02 0.94 0.03 0.00 0.00 1.00 0.22

(0.63) (0.02) (0.01) (0.01) (0.00) (0.00) (0.00) (0.09)
DEM/USD 16.02 0.02 0.80 0.07 0.90 0.07 0.92 0.87

(5.78) (0.02) (0.06) (0.02) (0.27) (0.02) (0.02) (0.28)
YEN/USD 14.41 0.09 0.84 0.12 0.55 0.10 0.95 0.77

(2.67) (0.03) (0.02) (0.01) (0.07) (0.01) (0.01) (0.13)
24 Hours
USD/AUD 29.82 0.03 0.65 0.24 0.63 0.27 0.94 0.20

(20.53) (0.04) (0.11) (0.09) (0.14) (0.05) (0.03) (0.01)
USD/GBP 202.58 0.07 0.80 0.14 0.01 (0.00) 1.00 (0.02)

(73.09) (0.06) (0.13) (0.02) (0.00) (0.00) (0.00) (0.01)
DEM/USD 123.89 0.04 0.50 0.20 0.55 0.10 0.65 0.33

(15.83) (0.07) (0.12) (0.02) (0.19) (0.04) (0.18) (0.13)
YEN/USD 174.40 0.15 0.45 0.38 0.54 0.29 0.73 0.64

(62.43) (0.03) (0.10) (0.05) (0.26) (0.05) (0.06) (0.17)

GARCH-I HARCHEGARCH(1,1)
α βγ ηκα β 610⋅γ710⋅γ
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Table 2. Statistical Properties of High Frequency Foreign Exchange Returns 
 

 
 

 
 
 
 

 
 
 

 
 
 
 
 
 

Table 2 presents the first four moments of the unconditional return distribution at different time intervals 
for the USD/AUD, USD/GBP, DEM/USD and JPY/USD exchange rates. The numbers in parenthesis to the 
right of the mean values are the associated standard errors, also raised by 104. The annualized standard 
deviation, expressed in percentage terms, is found by multiplying the standard deviation by the square root 
of the number of times the returns are sampled during a year. The numbers in rectangular brackets to the 
right of the skewness and kurtosis values are the marginal significance levels of the test of the null 
hypothesis that the skewness and excess kurtosis values are equal to zero and three respectively. The 
numbers in rectangular brackets reported in the second last column are the marginal significance levels of 
the Ljung-Box portmanteau tests for autocorrelation in squared returns with 48, 24, 15 and 10 degrees of 
freedom for the thirty-minute, hourly, eight hourly and daily series respectively. All Ljung-Box Q-statistics 
are significant at any conventional level of significance of a χ2 with the corresponding degrees of freedom. 
The numbers in rectangular brackets reported in the final column are the marginal significance levels of the 
Lagrange multiplier tests for the presence of heteroskedasticity, and are obtained by regressing squared 
returns on a constant and the five most recent lagged squared returns. These statistics follow a χ2 with 5 
degrees of freedom, and again all are significant at any conventional significance level.   

 
 
 
 
 
 
 

 
 

Time Interval StDev * 104 Ann (%) LB Q-Stat LM test
USD/AUD
30 Minutes -0.11 (0.07) 11.62 12.78 0.35 [0.00] 15.52 [0.00] [0.00] [0.00]
1 Hour -0.22 (0.15) 16.51 12.84 0.54 [0.00] 14.42 [0.00] [0.00] [0.00]
8 Hours -1.73 (1.20) 42.87 11.78 0.29 [0.00] 8.11 [0.00] [0.00] [0.00]
24 Hours -5.13 (3.32) 74.49 11.83 0.77 [0.00] 6.75 [0.00] [0.00] [0.00]
USD/GBP
30 Minutes -0.01 (0.05) 8.07 8.87 -0.17 [0.00] 11.46 [0.00] [0.00] [0.00]
1 Hour -0.03 (0.10) 11.33 8.81 -0.25 [0.00] 12.81 [0.00] [0.00] [0.00]
8 Hours -0.21 (0.76) 29.50 8.81 -0.12 [0.03] 6.23 [0.00] [0.00] [0.00]
24 Hours -0.49 (2.29) 51.36 8.15 0.11 [0.16] 4.01 [0.00] [0.00] [0.01]
DEM/USD
30 Minutes 0.03 (0.06) 8.91 9.79 -0.39 [0.00] 19.68 [0.00] [0.00] [0.00]
1 Hour 0.06 (0.11) 12.54 9.75 -0.43 [0.00] 13.63 [0.00] [0.00] [0.00]
8 Hours 0.52 (0.91) 35.19 9.68 -0.16 [0.01] 5.31 [0.00] [0.00] [0.00]
24 Hours 1.62 (2.80) 62.80 9.97 -0.27 [0.01] 4.00 [0.00] [0.00] [0.01]
JPY/USD
30 Minutes -0.01 (0.09) 13.98 15.37 -0.69 [0.00] 49.73 [0.00] [0.00] [0.00]
1 Hour -0.02 (0.18) 20.06 15.60 -0.83 [0.00] 38.76 [0.00] [0.00] [0.00]
8 Hours -0.16 (1.42) 55.07 15.14 -0.67 [0.00] 9.80 [0.00] [0.00] [0.00]
24 Hours -0.35 (4.28) 95.79 15.21 -1.26 [0.00] 8.78 [0.00] [0.00] [0.00]

   Mean * 104 Skewness Kurtosis
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Table 3. Comparison of Simulated and Empirical Return Distributions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3 presents the results of the Monte Carlo exercise examining whether the unconditional moments of 
the empirical distribution lie inside the 95th and 99th percentiles of the unconditional simulated moments. In 
this table, �accept� refers to occasions where the null hypothesis that the simulated and empirical moments 
are the same cannot be rejected at the 5 percent level; �5%� refers to instances where the null is rejected at 
the 5 (but not the 1) percent level; and �1%� refers to instances where the null is rejected at the 1 percent 
level. Blank spaces for the HARCH model refer to instances where the model�s parameter values violated 
the stationarity condition (see the notes under Table 1(b) for a discussion). 
 
 

Mean St Dev Skew Kurt Mean St Dev Skew Kurt Mean St Dev Skew Kurt
30 Minutes

USD/AUD accept 5% 1% 1% accept 5% 1% 1% accept 5% 1% 1%
USD/GBP accept 5% 1% 1% accept accept 1% 1% accept 5% 1% 1%
DEM/USD accept 5% 1% 1% accept accept 1% 1% accept 5% 1% 1%
YEN/USD accept 5% 1% 1% accept 5% 1% 1% accept 5% 1% 1%

1 Hour
USD/AUD accept accept 1% 1% accept accept 1% 1% accept accept 1% 1%
USD/GBP accept accept 1% 1% accept accept 1% 1% accept accept 1% 1%
DEM/USD accept accept 1% 1% accept accept 1% 1% accept accept 1% 1%
YEN/USD accept 5% 1% 1% accept 5% 1% 1% accept 5% 1% 1%

8 Hours
USD/AUD accept accept 1% 1% accept accept 1% 5% accept accept 1% 1%
USD/GBP accept accept accept 1% accept accept accept accept accept accept accept 1%
DEM/USD accept accept 5% 1% accept accept accept accept accept accept 5% 1%
YEN/USD accept accept 1% 1% accept accept 1% 5% accept accept 1% 1%

24 Hours
USD/AUD accept accept 1% 5% accept accept 1% accept accept accept 1% 5%
USD/GBP accept accept accept accept accept accept accept accept accept accept accept accept
DEM/USD accept accept 5% accept accept accept accept accept accept accept 5% accept
YEN/USD accept accept 1% 5% accept accept 1% accept accept accept 1% 5%

Mean St Dev Skew Kurt Mean St Dev Skew Kurt Mean St Dev Skew Kurt
30 Minutes

USD/AUD accept 5% 1% 1% accept accept 1% 1% accept 5% 1% 1%
USD/GBP accept accept 1% 1% accept accept 1% 1% accept 5% 1% 1%
DEM/USD accept accept 1% 1% accept accept 1% 1% accept 5% 1% 1%
YEN/USD accept 5% 1% 1% accept accept 1% 1% accept 5% 1% 1%

1 Hour
USD/AUD accept accept 1% 1% accept accept 1% 1% accept 1% 1% 1%
USD/GBP accept accept 1% 1% accept accept 1% 5% accept accept 1% 1%
DEM/USD accept accept 1% 1% accept accept 1% 1% accept accept 1% 1%
YEN/USD accept 5% 1% 1% accept accept 1% 1% accept 5% 1% 1%

8 Hours
USD/AUD accept accept accept 1% accept accept 1% 1%
USD/GBP accept accept accept 1% accept accept accept 1%
DEM/USD accept accept accept 1% accept accept 5% 1%
YEN/USD accept accept 1% 1% accept accept 1% 1%

24 Hours
USD/AUD accept accept 5% 5% accept accept 1% 5%
USD/GBP accept accept accept accept accept accept accept accept
DEM/USD accept accept accept accept accept accept accept accept
YEN/USD accept accept 1% 1% accept accept 1% 5%

GARCH -I

HARCH GARCH DIFFUSION

GARCH(1,1) (normal) GARCH(1,1) (Student-t )

EGARCH(1,1)
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Table 4.  Descriptive Statistics for Estimates of Daily Realized Variance 
 

 

 

 

 

 
In Table 4, the column headings �5-min� and �30-min� refer to the construction of daily realized variance 
from the sum of 288 five-minute and 48 thirty-minute squared intraday returns respectively. �24-hr� refers 
to the construction of daily realized variance by simply squaring daily returns. All figures are raised by 103.   

 
 
 
 
 

 
Table 5.  Daily Variance Forecasting Performance: Predictive R2’s 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

Table 5 reports the R2 from equations (15) and (16). The R2 values in the equation (15) rows are based on 
the regression of realized daily variance on the forecast of daily variance. The R2 values below in the 
equation (16) rows (in italics) are based on the regression of the log of realized daily variance on the log 
variance forecast. The figures in the �5-min� and �30-min� rows are the R2 where daily realized volatility is 
defined as the sum of 288 five-minute and 48 thirty-minute squared intraday returns respectively. The 
figures in the �24-hr� rows are the R2 where daily realized volatility is defined as the squared daily return. 

USD/AUD USD/GBP
5-min 30-min 24-hr 5-min 30-min 24-hr

Std Dev 0.064 0.072 0.130 0.019 0.024 0.046
Range 0.601 0.784 1.609 0.193 0.283 0.412

DEM/USD JPY/USD
5-min 30-min 24-hr 5-min 30-min 24-hr

Std Dev 0.041 0.042 0.068 0.170 0.188 0.255
Range 0.412 0.458 0.746 3.154 3.522 4.039

R2 from GARCH(1,1) GARCH(1,1) GARCH-I EGARCH(1,1) AR Riskmetrics
equation: (normal) (Student-t)

15 0.340 0.376 0.270 0.196 0.235 0.123
16 0.176 0.222 0.237 0.121 0.350 0.066
15 0.293 0.315 0.254 0.196 0.195 0.137
16 0.180 0.206 0.229 0.137 0.279 0.112
15 0.002 0.004 0.006 0.003 0.007 0.006
16 0.003 0.004 0.006 0.005 0.013 0.002
15 0.110 0.112 0.108 0.086 0.288 0.080
16 0.193 0.195 0.195 0.183 0.229 0.168
15 0.084 0.087 0.101 0.063 0.257 0.058
16 0.165 0.166 0.179 0.145 0.249 0.139
15 0.001 0.000 0.020 0.001 0.020 0.002
16 0.011 0.013 0.019 0.005 0.008 0.003
15 0.107 0.117 0.200 0.094 0.517 0.077
16 0.255 0.243 0.420 0.178 0.254 0.296
15 0.065 0.070 0.154 0.058 0.441 0.051
16 0.208 0.186 0.372 0.144 0.194 0.267
15 0.008 0.008 0.006 0.008 0.008 0.008
16 0.008 0.008 0.009 0.008 0.007 0.007
15 0.612 0.475 0.498 0.238 0.407 0.207
16 0.460 0.429 0.499 0.275 0.216 0.334
15 0.560 0.426 0.437 0.205 0.356 0.175
16 0.412 0.386 0.439 0.247 0.177 0.272
15 0.035 0.014 0.024 0.008 0.099 0.007
16 0.009 0.004 0.010 0.002 0.008 0.007

5-min

30-min

24-hr

5-min

30-min

24-hr

30-min

24-hr

JPY/USD

USD/AUD

USD/GBP

DEM/USD

5-min

30-min

24-hr

5-min
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Table 6.  Daily Variance Forecasting Performance: Alternative Criterion 
 
  
 
 
 
  
 
       
 
 
 

 
  
 
 
 
 
 

 

Table 6 presents the relative ranking of model forecasting performance for each loss function, with 1 (6) 
referring to the superior (worst) model. These criteria are the root mean squared error (RMSE), mean 
absolute error (MAE), mean absolute percent error (MAPE), median squared error (MSE) and Theil�s U 
statistic, and are defined by equations (17), (18), (19) and (20) respectively.  The numbers reported under 
the columns �5-min� and �30-min� refer to instances where realized daily variance is given by the sum of 
288 five-minute and 48 thirty-minute squared intraday returns respectively.  

 
 
 
 
 
 

 

5-min 30-min 5-min 30-min 5-min 30-min 5-min 30-min
  RMSE
GARCH(1,1) normal 1 1 3 4 3 4 1 1
GARCH(1,1) Student-t 4 3 1 1 5 5 3 3
GARCH-I 5 5 6 6 4 3 2 2
EGARCH(1,1) 6 6 5 3 6 6 6 5
AR 2 4 2 5 1 1 5 6
Riskmetrics 3 2 4 2 2 2 4 4
  MAE
GARCH(1,1) normal 3 1 2 3 4 6 1 1
GARCH(1,1) Student-t 4 3 1 1 5 5 3 3
GARCH-I 6 6 4 2 3 2 2 2
EGARCH(1,1) 5 4 6 5 6 4 6 5
AR 1 5 5 6 2 3 5 6
Riskmetrics 2 2 3 4 1 1 4 4
  MAPE
GARCH(1,1) normal 2 4 2 5 6 6 3 4
GARCH(1,1) Student-t 1 1 1 4 5 5 2 3
GARCH-I 5 3 3 1 2 4 1 1
EGARCH(1,1) 4 2 6 3 4 2 4 2
AR 6 6 5 6 3 1 5 5
Riskmetrics 3 5 4 2 1 3 6 6
  MSE
GARCH(1,1) normal 2 2 1 2 5 6 4 2
GARCH(1,1) Student-t 4 1 2 3 6 5 2 3
GARCH-I 6 5 3 1 3 3 1 1
EGARCH(1,1) 5 3 6 6 4 1 6 5
AR 1 6 5 4 2 2 3 4
Riskmetrics 3 4 4 5 1 4 5 6
  Theil's U
GARCH(1,1) normal 1 1 3 4 3 4 1 1
GARCH(1,1) Student-t 4 3 2 1 5 5 3 3
GARCH-I 5 5 6 6 4 3 2 2
EGARCH(1,1) 6 6 5 3 6 6 6 5
AR 2 4 1 5 1 1 5 6
Riskmetrics 3 2 4 2 2 2 4 4

DEM/USD JPY/USDUSD/AUD USD/GBP
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Table 7. Profitability Assessment of Variance Forecasts 
 
 
 
 
  
 
 
 
 
 
 
Table 7 presents the results from the trading game where investors use the AR, GARCH(1,1) or GARCH-I 
estimator to generate variance forecasts one-day-ahead. The column entitled �Superior  Model� reports 
which of the two competing models generated a positive average daily profit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model Used Model Used Superior Average Daily t-stat % of Days 
by Investor A by Investor B Model Profit of Superior

Superior Model Model Profited

GARCH-I
GARCH-I

GARCH(1,1)
AR

GARCH(1,1)

GARCH-I
GARCH-I

AR

GARCH(1,1)
GARCH(1,1)

AR
GARCH(1,1)

GARCH-I
AR

GARCH(1,1) GARCH-I
GARCH(1,1)

AR
AR

GARCH-I

GARCH(1,1) AR
GARCH-IARUSD/AUD

USD/GBP

DEM/USD

JPY/USD

GARCH-I ¥ 4,673 (2.11) 57.1
GARCH-I ¥ 7,152 (3.75) 58.7

GARCH(1,1) ¥ 3,636 (2.14) 55.6
GARCH-I DM 27.28 (2.90) 65.1
GARCH-I DM 21.84 (2.36) 52.4

AR DM 20.54 (2.52) 59.5
GARCH-I £ 6.61 (2.04) 57.1
GARCH-I £ 7.88 (2.61) 57.9

GARCH(1,1) £ 2.46 (0.87) 54.0
GARCH(1,1) AUD $ 37.80 (4.20) 69.8

AR AUD $ 5.55 (0.64) 52.4
AR AUD $ 14.73 (1.62) 54.8
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Appendix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The table in the Appendix presents the skewness, excess kurtosis and Ljung Box Q-Statistics for the 
standardized residuals after fitting the various models to returns measured at different frequencies. The 
numbers in rectangular brackets to the right of the skewness and kurtosis values are the marginal 
significance levels of the test of the null hypothesis that the skewness and excess kurtosis values are equal 
to zero. The numbers in rectangular brackets under the Q-St columns are the marginal significance levels of 
the Ljung-Box portmanteau tests for autocorrelation in squared standardized residuals with 48, 24, 15 and 
10 degrees of freedom for the thirty-minute, hourly, eight hourly and daily series respectively. 

Q-St Q-St Q-St
30 Minutes
USD/AUD -0.14 [0.00] 7.72 [0.00] [0.00] -0.33 [0.00] 6.87 [0.00] [0.00] -0.14 [0.00] 7.72 [0.00] [0.00]
USD/GBP -0.14 [0.00] 7.44 [0.00] [0.00] -0.17 [0.00] 6.27 [0.00] [0.00] -0.14 [0.00] 7.44 [0.00] [0.00]
DEM/USD -0.32 [0.00] 12.83 [0.00] [0.00] -0.14 [0.00] 11.22 [0.00] [0.00] -0.32 [0.00] 12.83 [0.00] [0.00]
YEN/USD 0.57 [0.00] 41.20 [0.00] [0.99] 0.63 [0.00] 36.25 [0.00] [0.99] 0.57 [0.00] 41.20 [0.00] [0.99]
1 Hour
USD/AUD -0.07 [0.00] 6.67 [0.00] [0.03] -0.14 [0.00] 6.63 [0.00] [0.03] -0.08 [0.00] 6.77 [0.00] [0.03]
USD/GBP -0.25 [0.00] 9.31 [0.00] [0.00] -0.19 [0.00] 8.51 [0.00] [0.00] -0.17 [0.00] 9.30 [0.00] [0.00]
DEM/USD -0.28 [0.00] 8.61 [0.00] [0.00] -0.26 [0.00] 7.61 [0.00] [0.00] -0.06 [0.00] 7.37 [0.00] [0.00]
YEN/USD 0.61 [0.00] 31.14 [0.00] [0.99] 0.38 [0.00] 24.81 [0.00] [0.41] 0.69 [0.00] 34.14 [0.00] [0.99]
8 Hours
USD/AUD 0.23 [0.00] 2.16 [0.00] [0.96] 0.24 [0.00] 2.12 [0.00] [0.97] 0.18 [0.00] 2.35 [0.00] [0.93]
USD/GBP -0.06 [0.17] 3.23 [0.00] [0.03] 0.00 [0.48] 3.20 [0.00] [0.03] -0.05 [0.21] 3.14 [0.00] [0.03]
DEM/USD -0.16 [0.01] 2.31 [0.00] [0.00] -0.16 [0.01] 2.30 [0.00] [0.00] -0.14 [0.01] 2.16 [0.00] [0.00]
YEN/USD -0.65 [0.00] 7.85 [0.00] [0.98] -0.64 [0.00] 6.96 [0.00] [0.99] -0.64 [0.00] 8.04 [0.00] [0.93]
24 Hours
USD/AUD 0.18 [0.05] 1.28 [0.00] [0.75] 0.23 [0.02] 1.18 [0.00] [0.48] 0.04 [0.36] 1.18 [0.00] [0.26]
USD/GBP 0.10 [0.18] 1.02 [0.00] [0.26] 0.10 [0.18] 1.01 [0.00] [0.22] 0.10 [0.18] 1.01 [0.00] [0.17]
DEM/USD -0.20 [0.03] 0.98 [0.00] [0.82] -0.24 [0.01] 0.92 [0.00] [0.74] -0.25 [0.01] 0.99 [0.00] [0.82]
YEN/USD -0.74 [0.00] 2.11 [0.00] [0.39] -0.91 [0.00] 1.74 [0.00] [0.17] -0.69 [0.00] 2.15 [0.00] [0.27]

Q-St Q-St
30 Minutes
USD/AUD -0.19 [0.00] 9.11 [0.00] [0.00] 0.01 [0.35] 6.99 [0.00] [0.00]
USD/GBP -0.14 [0.00] 7.97 [0.00] [0.00] -0.12 [0.00] 7.48 [0.00] [0.00]
DEM/USD 0.19 [0.00] 14.08 [0.00] [0.01] -0.33 [0.00] 14.66 [0.00] [0.00]
YEN/USD 0.49 [0.00] 39.87 [0.00] [0.58] -0.07 [0.00] 24.03 [0.00] [0.42]
1 Hour
USD/AUD -0.07 [0.00] 6.98 [0.00] [0.00] 0.17 [0.00] 7.21 [0.00] [0.00]
USD/GBP -0.23 [0.00] 9.29 [0.00] [0.00] -0.23 [0.00] 9.11 [0.00] [0.00]
DEM/USD -0.02 [0.19] 8.27 [0.00] [0.00] -0.22 [0.00] 8.57 [0.00] [0.00]
YEN/USD 0.10 [0.00] 24.60 [0.00] [0.04] -0.76 [0.00] 33.82 [0.00] [0.26]
8 Hours
USD/AUD 0.25 [0.00] 2.41 [0.00] [0.95]
USD/GBP -0.08 [0.10] 3.19 [0.00] [0.02]
DEM/USD -0.15 [0.01] 2.15 [0.00] [0.00]
YEN/USD -0.54 [0.00] 7.63 [0.00] [0.99]
24 Hours
USD/AUD 0.21 [0.03] 1.31 [0.00] [0.85]
USD/GBP 0.06 [0.29] 0.85 [0.00] [0.15]
DEM/USD -0.23 [0.02] 0.89 [0.00] [0.76]
YEN/USD -0.68 [0.00] 1.83 [0.00] [0.38]

GARCH-I
Skewness Kurtosis

GARCH(1,1) (normal) GARCH(1,1) (Student-t )

Skewness Kurtosis

Skewness Kurtosis

HARCH
Skewness Kurtosis

Skewness Kurtosis

EGARCH(1,1)


